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Abstract 

By fitting effective one-particle potentials to Bragg 
neutron diffraction intensities measured by Sakata, 
Harada, Cooper & Rouse [Acta Cryst. (1980), A36, 
7-15] for the cubic perovskite caesium lead chloride, 
CsPbC1 a, it has been established that, contrary to the 
results of Sakata et aI., the effective one-particle 
potentials for the C1 ion are neither independent of 
temperature nor of a highly anharmonic form. To the 
resolution limit of the data, collected out to sin 0/2 = 
0.58 A -1, the one-particle probability density function 
of the C1 ion is singly peaked. It is proposed that the 
strong temperature dependence of the effective one- 
particle potentials, and the accompanying anomalous 
temperature behaviour observed for the mean-square 
displacements of the C1 and Cs ions above the 
anti-ferrodistortive phase transition temperature, result 
from soft-mode vibrations. The temperature depen- 
dence of the mean-square displacement in the presence 
of soft modes is derived and it is shown for the first time 
that a significant temperature-invariant component will 
be the main additional effect at temperatures well above 
the critical temperature. The C1 and Cs ions in CsPbCI 3 
obey this derived mean-square displacement relation- 
ship. 

1. Introduction 

In recent years the interpretation of Debye-Waller 
factors (DWF's) from weakly anharmonic systems in 
terms of the parameters of an effective one-particle 
potential (OPP) has become an established technique 
(Dawson, Hurley & Maslen, 1967; Willis & Pryor, 
1975). The effective OPP may be viewed as represent- 
ing the mean field seen by the atom in question, 
resulting from the influence of all the other atoms in the 
crystal. For systems where the interparticle displace- 
ment correlations are not very large in magnitude the 
measured OPP parameters are found to be almost 
independent of temperature (apart from the minor 
effect of thermal expansion of the lattice), e.g. for SrF 2 
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(Mair, Barnea, Cooper & Rouse, 1974) and for Si and 
Ge (Roberto, Batterman & Keating, 1974). 

In materials which undergo structural phase transi- 
tions the dynamics of the crystal may be highly 
anharmonic, so that perturbation theory about the 
harmonic case may no longer be applicable. In the 
vicinity of a structural phase transition it is also to be 
expected that the atomic motion will be characterized 
by interparticle correlations which are large in mag- 
nitude. The question arises as to whether the OPP 
formalism is still a useful one in the presence of such 
large interparticle correlations. Recognizing, however, 
that the DWF is an exact one-particle property of the 
system, we can still work within the framework of the 
OPP formalism, obtaining atomic OPP's at each 
individual temperature. The temperature dependence of 
the OPP's may then be related to the cooperative 
effects in the crystal. 

CsPbCla is a cubic perovskite which undergoes an 
antiferrodistortive, first-order phase transition at 320 K 
to the tetragonal phase. A second-order phase transi- 
tion, to an orthorhombic structure, occurs at 315 K. The 
phase transitions are associated with the condensation 
of rotational modes of the PbC16 octahedra, the M 3 
mode, depicted schematically in Figs. l(a) and (b) 
being reponsible for the phase transition at 320 K 
(Fujii, Hoshino, Yamada & Shirane, 1974). Figs. l(a) 
and (b) show that the only atomic displacements 
directly affected by the M a mode are those of the C1 
ions parallel to the xy plane. The phase transition at 
315 K corresponds to the condensation of the Z 5 mode, 
see Fig. l(c), which involves motion of the Cs atoms as 
well as the PbCI 6 rotations, and is anticipated in the 
cubic phase by a soft R25 mode (Fujii et al., 1974). 

Accurate neutron diffraction data have been collec- 
ted for CsPbCI a over the temperature range 325-623 K 
by Sakata, Harada, Cooper & Rouse (1980), who 
applied corrections for extinction and thermal diffuse 
scattering. Refinements of the intensities were made by 
Sakata et al. at each temperature, using Debye-Waller 
factors which allowed for anharmonic effects by 
including contributions from the fourth cumulant of the 
atomic displacements (Johnson, 1970), i.e. by a 
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perturbation expansion about the harmonic case. In 
these refinements the only anharmonic term which was 
significant at each temperature was the anisotropic 
fourth cumulant for the CI ions, corresponding to 
preferred motion of these ions in the x and y directions, 
consistent with the displacements expected for the M 3 
mode. 

The complicated character of the crystal dynamics 
is evident from the temperature dependence of the 
mean-square displacements (m.s.d.'s). These are dis- 
played in Fig. 2, the m.s.d.'s being the experimental 
values obtained from the corresponding refined Debye-  
Waller B u values tabulated by Sakata et al. (1980). In 
the figure 2 (uH/±)o refer to displacement parallel/ 
perpendicular to the x y  plane (see Fig. la) of the CI ion 

2 S at the centre of the face z = 0. The curve (u ,)ct will be 
discussed in §4. Examination of the other curves shows 
that although the m.s.d, of the Pb ion, (U2)eb, and the 

(u±) o, follow the C1 ion perpendicular to the x y  plane, 2 
expected harmonic curve, the m.s.d.'s of the Cs ion, 
(U2)cs and of the C1 ion in the x y  plane, (u~)o,  
extrapolate linearly from the high-temperature values to 
give a positive non-zero intercept at 0 K. In the case of 
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Fig. 1. (a) Two unit cells of the CsPbCI 3 structure showing the 
rotations of the PbCi 6 octahedra for an M3 mode. In this 
diagram, rotation about the : axis is shown. The cubic symmetry 
of the crystal requires the presence of similar rotations about the 
x and y axes as well. (b) Projection on the xy plane showing the 
CI ion displacements which become stabilized by condensation of 
the M~ mode at 320 K. (c) As for (b), but showing the CI and Cs 
ion displacements for the Z~ mode which condenses at 315 K. 
IThese figures are based on figures from Fujii et al. (1974).1 

(U~)c ~ the intercept is very large. Also, the values of 
(u~)o rise away from the linear, high-temperature 
curve as the phase transition temperature, T o , is 
approached from above. Except for this anomalous 
behaviour near T 0, Sakata et al. were able to fit their 
experimental (U~)c I values with t empera ture  
independent  highly anharmonic OPP models. They did 
not, however, test these OPP's on their original 
intensity data. 

In the present study, the analysis of Sakata et al. 
(1980) is carried further. Highly anharmonic trial 
OPP's for the CI ion are used in refinements of the 
intensity data sets at individual temperatures. Some of 
the trial OPP's correspond to multi-peaked one-particle 
probability density functions (PDF's) for the CI ion and 
some to singly-peaked PDF's. The evidence from the 
Fourier syntheses of Sakata et al. (1980) (resolution 
limit of 0.58 A -~ in sin 0/2, corresponding to 0-5/k in 
real space) and from the neutron diffraction work of 
Hutton, Nelmes, Meyer & Eiriksson (1979) at 325 K 
(resolution limit of 1.2 A -~ in sin 0/2) suggests that the 
C1 ion PDF is singly peaked within the resolution of the 
experiments. As multiple peaking would be associated 
with the tendency of the C1 ion to vibrate about 

< u2>(~2) 

0-.20 

0-16 

0.12 

0.08 

0-04 

/ / 

1 t l  I ~  
t / / 

t t / / 

/ / '  
/ / 

/ /  
/ /  

/ 
/ / 

, /  
/ 

/ 

II 1 
i 

i 
i 

2 S 
< u, >ci I 

L--I ! I t 

~ C l  

I I I T ( K )  
0 I00 200 500 400 500 600 

Fig. 2. Experimental mean-square displacements of  the ions in 
CsPbC13. (u]/_~ refer to displacements parallel/perpendicular to 
the xy  plane (see Fig. la) of  the C1 ion at the centre of  the face 
z = 0. The Pb and Cs ions have cubic site symmetry and so their 

2 $ m.s.d.'s refer to an arbitrary direction. The curve (u,)o is the 
soft-mode contribution to (u~)o, as discussed in §4. The values 
of the m.s.d.'s ((U~)cl, (u~)o,  (U2)c, and (U2)pb) were obtained 
from Table 1 of Sakata et al. (1980), where the corresponding 
refined Debye-Waller B o values are tabulated for each tem- 
perature. Solid lines for (U~)c . (u])Sl and (U2)cs are fits to the 
data using equation (10) and the parameter values quoted in § 4. 
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Table 1. Trial highly anharmonic  OPP's f o r  Cl Ion displacement in the xy  plane 

O P P  equation* 

(a) A u  6 

(b) A (u~ + u~) 
(c) A u' + 8 (u'~ + u'~) 

(d) A{(lu,~l - d) 2 
+ (lu/31 -- d) 2} 

(e) hl(lu, ,I  -- d) 2 
+ A2(lugl - d) 2 

AI. 2 = 0 lu,,.91 < d 
A I . 2 = A  lua.DI > d  

(dO au2  

Number  of  
Type  of  O P P  peaks in P D F  G O F t  R R w Parameter  values 

Sextic (of  form used by Sakata  1 12.8 8.88 20.7 A = 0.39 (10 -19 J ~k -6) 
et al., 1980) 

Anisotropic sextic 1 11.9 8.01 19.3 A = 0.73 (10-19 J /~-6)  
Anisotropic quartic [Sakata 1 (A > 0) 2.15 1.55 3.45 A = 0.173 (10 -19 J ,/k -2) 

et al. (1980)used  4 (A < 0) B = 0 .024 (10-19 J/Tk-4) 
isotropic forml 

Anisotropic double quadratic 1 (A = 0) 2.22 1.57 3-57 A = 0 .203 (10 -19 J /~-2)  
4 (A 4: 0, d > 0) d = - 0 . 0 0 7  (/k) 

Anisotropic elastic-sided 1 (fiat-topped) 2.09 1.84 3.35 A = 0 .202 (10 -19 J A -2) 
square well d = - 0 - 0 0 5  (/k) 

Harmonic  1 2.48 1.93 4.03 A = 0.191 (10-19 J / k  -2) 

* u,~ ~ are the components  of  the C1 ion displacements along axes rotated away from the crystallographic a I 2 axes by n/4 ,  the axis of  
rotation being the a3 axis. u 2 is defined by: u 2 = u~ + u~. 

t Agreement factors are defined in terms of  A t = (lob s -- I¢a1¢)/ as follows: G O F  = {" " 2 1/2 ,_ t = l A t / ( n - - m ) }  , R  = 5 7 = l l A t l / Z T = l l o b s / ,  
R w = { ~  7= ~ w t A ~ / ~  7= ~ "' ,2 t l/2 where there are n intensities, 1, with weights w, and m is the number of  least-squares parameters.  rvl Jobs/f  

positions of local equilibrium which anticipate the 
structure of the low-temperature phase (see Bruce & 
Schneider, 1977; Bruce, 1980), the question whether 
multiple peaking occurs is of some importance. As well 
as seeking details of the structure of the CI ion 
one-particle PDF, the present analysis tests the 
applicability of the OPP approach to a highly anhar- 
monic system in which cooperative atomic motion is 
significant. A specific aim is to provide a model for the 
m.s.d, data of CsPbC1 a which is consistent both with 
the observed intensity data of Sakata et al. (1980) and 
with the lattice-dynamical properties of the system. 

and (d) have four minima, these being disposed 
symmetrically about the equilibrium position along the 
x and y axes, i.e. in the preferred directions of the C1 
motion. 

For models (a) to (c) numerical integration is 
necessary to compute the corresponding Debye-Waller 
factors, the method chosen being Gaussian quadrature. 
Models (d) and (e), which are related to four displaced 
harmonic oscillators with separation parameter d, have 
the advantage that they can be treated by analytical 
procedures. OPP's of forms (d) and (e) are depicted 
along the x (or y) axis in the one-dimensional diagrams 

2. Anharmonic one-particle potential models 

The trial OPP's for the C1 ion motion in the xy  plane 
used in the refinement of the intensity data of Sakata et 
al. (1980) are given in Table 1. All of them [except the 
harmonic model (f)]  are capable of producing the 
temperature-dependent behaviour observed for (U~)c I, 
at least in the non-critical region above 450 K. The 
OPP's for the Pb and Cs ions and for the CI ion 
displacement perpendicular to the xy  plane were 
assumed to be of harmonic form. Model (a) of Table 1 
and an isotropic form of model (c) were used by Sakata 
et al. to fit their 2 ( u , ) o  data above 450 K.* The 
anisotropie form of the OPP's (b) to (e) is such as to 
allow for the preferred motion of the C1 ion along the x 
and y directions, observed by Sakata et al. in the form 
of a refined fourth cumulant term for the C1 ion. Under 
the conditions given in column 3 of the table, OPP's (c) 

* Note  that Sakata  et  al. did not fit these models to their intensity 
data, their fits being to the previously refined mean-square 
displacements only. 

(a) 

(6) 
Fig. 3. (a) Double  quadratic well, O P P  (d) in Table 1, along x 

direction. (b) Elastic-sided square well, O P P  (e) in Table 1, along 
x direction. 
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of Figs. 3(a) and (b), from which it can be seen that 
model (d) differs from model (e) only in the region 
between the minima, where (e) is fiat. In other words, 
the difference between the models lies in the four- 
minimum or fiat-bottomed nature of the OPP's  or, 
correspondingly, the four-maximum or flat-topped 
nature of the one-particle PDF's.  Equations for the 
Debye-Wal ler  factor relating to these two models and 
detailed discussions of their properties, including the 
effect of the cusp in model (d). are given elsewhere 
(Mair, 1982). 

The weights used in the refinements of the intensities 
were the reciprocal squared standard deviations of the 
observed intensities, obtained from Table 3 of Sakata et 
al. (1980). Results from the refinements of the intensity 
data are presented in columns 4 to 7 of Table 1. These 
results are for the data at 573 K for all models. For 
models (c) and (d) additional refinements were made at 
473 and 333 K, respectively. Columns 4 to 6 give the 
agreement factors, defined below the table, and column 
7 gives refined values of the OPP parameters. 

The first conclusion (result 1) that can be made upon 
inspection of Table 1 is that only the models which can 
be reduced to a harmonic form are at all successful 
and, for these, the refined parameters represent small 
perturbations from the harmonic case, to account for 
the anisotropic CI ion vibration. This result contradicts 
the conclusion of Sakata et al. (1980)  that the C! ion is 
vibrating in a (temperature independent) highly anhar- 
monic OPP. The contradiction arises because Sakata et 
al. used only partial information in their highly 
anharmonic refinements, namely the mean-square 
displacement data, whereas the full sets of intensity 
data have been refined here. 

A secondary result (result 2) from the model 
refinements in Table 1 is that the evidence is against 
multiple peaking in the one-particle PDF as, for the 
quartic oscillator, model (c), parameter A refined to a 
positive value. Models (d) and (e) were capable of 
fitting the data fairly successfully, model (e) being 
slightly preferred, but neither of them produced 
physically realistic values for the separation param- 
eter, d, which became negative. The resolution of the 
data was 0.5 A, so that multi-peaking in the PDF with 
a peak separation less than 0.5 A cannot be ruled out. 

Result 1 above presents us with the following 
apparent paradox. At  any  par t i cu lar  t empera ture  the 
CI a toms  are v ibrat ing  as i f  they were in a nearh '  
harmon ic  e f fect ive  O P P  well  whereas  (U2)cl is behav-  
ing in a m a n n e r  which is character is t ic  o f  a h ighly  
a n h a r m o n i c  OPP.  Noticing that the anisotropic nature 
of the C1 ion motion is probably indicative that the M 3 
and R25 rotational modes are contributing to a 
considerable extent to the CI vibration, even far from 
the phase transition, we turn to consideration of the 
possible effects of such cooperative motion on the 
OPP's.  

3. Temperature dependence of the CI ion PDF and 
effective OPP 

We have seen in the previous section that the OPP for 
the CI ion at any given temperature in the range studied 
is harmonic, to a first approximation, i.e. the OPP for 
any direction in the xy  plane is, approximately, 

VCI= (~CI U2/2, (1) 

where a cl is the harmonic OPP coupling constant and 
u is a displacement in the x y  plane, along the x 
direction, say. In this approximation, 

(U2)cl = k B T/o~ c', (2) 

where k B is the Boltzmann constant and T the 
temperature. We can see from (2) that only for a m.s.d. 
linear with temperature and which can be extrapolated 
to zero at 0 K will the harmonic coupling constant be 
constant with temperature. The observed trend for 
(U2)cl in Fig. 2 is therefore indicative of a highly- 
temperature-dependent OPP coupling constant, 0t c~. A 
less-pronounced temperature dependence is also expec- 
ted for the harmonic OPP coupling constant of the Cs 
ion, Rcs whereas ct pb and cz cl will be essentially constant 
with temperature. 

To show explicitly the temperature dependence of 
the CI ion OPP, a flexible model for the one-particle 
PDF was used to refine the intensities at each 
temperature. The normalized PDF, pc~(Ux,U2,U3), was 
chosen to be of the form 

PcI(Ul,Uz,U3) = ( 1 -- P)f(ul,u2,u3,0.1,0.3) 

+ P{ f ( u l  -- d, uz, u3, e l ,  03) 

+ f ( u ,  + d, u2, u3, oI, o3) 
+ f ( u  I , u 2 -- d, u 3, e'., e 3) 

+ f ( u l ,  u2 + d, U3, O~, 0"3)}/4, (3) 

where 
f ( x , . v , z , o l , o  3) = e x p / - ( x  2 + .v2)/2a~ - z2/20.~} 

x 12n0.~(2no])l/21-' 

It corresponds to a five-site disorder model (see also 
Megaw, 1969) in which a fraction (1 - P) of the C1 ion 
occupies the central site and the remaining fraction 
occupies sites at displacements +d  away from it along 
the x and y axes. The spatial distribution at each site is 
given by the Gaussian function f.  The disorder form of 
this model was chosen for convenience only, and does 
not indicate that five-site disordering is actually 
occurring.* The model should, rather, be interpreted as 

* The Bragg diffraction data cannot distinguish between a 
'split-atom' model representing a situation in which the atoms in 
each unit cell are fixed on one of the available multiple sites, the 
distribution being random when averaged over the crystal, and a 
model in which each atom is vibrating amongst the multiple sites 
around the mean position. However. the former model is not a 
realistic one, as the ordering of occupied sites occurring at the phase 
transition implies that mobility amongst the multiple sites must be 
possible. 
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a weakly anharmonic model for the C1 ion, with the 
anisotropic motion in the xy plane being specified by 
the extra parameters P, d and 0" 1. (At temperatures 
below 400 K the intensities were, in fact, equally well 
fitted by a four-site model.) 

The temperature dependence of the PDF along the x 
direction is shown in Fig. 4(a) (only four temperatures 
are shown to avoid crowding in the figure). Its 
single-peak nature is in accord with the results of the 
previous section. The effective OPP corresponding to 
each PDF of Fig. 4(a) may be obtained (in the classical 
r6gime) through the relationship 

V(u) = - k  s Tin {p(u)}, (4) 

and the resulting curves along the x direction are shown 
in Fig. 4(b). As anticipated at the beginning of this 
section the OPP curves appear nearly harmonic and 
are indeed temperature dependent. Fig. 4(b) shows a 
softening of the OPP's as temperature decreases, as 
compared with the quasi-harmonic effect of lattice 
expansion, where the softening occurs as T increases 
and is also a much smaller effect (see Mair et al., 1974). 
The OPP behaviour in Fig. 4(b) and the behaviour of 
(U2)cl and (U2)cs in Fig. 2 can more reasonably be 
attributed to the presence of cooperative vibrational 
motion in the form of soft modes. The question which 
then arises concerns the form of the temperature 
dependence induced in the mean-square displacements 
as a result of the soft modes. 

p(ut.O,O) 

2.0 ~ o , .  

1.(3 ~ 

0.0 l '.0 "--"----" 
(a) 

V (u 1,0,0) (10-t9 J) 
0.8 

0.4 

0.0 

u,(A) 
2.0 

(b) 
Fig. 4. (a) One-particle PDF's for Cl ion in x direction, p(ul,0,0), 

for 333,423,523 and 623 K. (b) Effective OPP's corresponding 
to the PDF's of (a). 

4. The effect of  soft modes 

Fujii et al. (1974) have observed that the phonon 
frequencies for the modes M 3 and Rz5 decrease with 
temperature, i.e. they are soft modes. We shall consider 
the effect that such soft modes would have on the 
m.s.d.'s. 

Meissner & Binder (1975) have shown that, for the 
classical r6gime and independent of the harmonic 
approximation, 

( ( Q . u ) 2 ) _  k B T 1 
Xm ~ lQ 'eJ (q )12w~(q ,T ) "  (5) 

qi 

where Q is the scattering vector, n the number of unit 
cells in the crystal and m the mass of the atom 
concerned. In the harmonic approximation, coj(q,T) is 
the frequency of the normal mode (q/) and is 
independent of temperature, but in the general case it is 
a renormalized phonon frequency, with eigenvector 
eJ(q). 

In the summation over modes (q j) we can separate 
out the frequencies associated with soft-mode 
behaviour, denoted by S, from the remhining essentially 
temperature-independent frequencies, denoted by R. 
Then 

<(Q" u)2 >2-ksT~ ' Q "e~(q) ' 2 N m  ~o~ (q) + --kBT~qslQ'eS(q)lZNm og~(q, T) 

(6) 
The first term in (6) is proportional to T and so has the 
same temperature dependence as in the harmonic 
approximation. For the second term we need to know 
the temperature dependence of the soft mode frequen- 
cies, OOs(q,T ). 

For the soft zone-boundary mode (M 3 for the phase 
transition at 320 K), the temperature dependence 
follows the Landau theory relationship, 

co2= og~(T-- Tc) /T o (7) 

where T c is the critical temperature for the transition 
and T is not so close to T c that critical fluctuations are 
occurring [see Landau & Lifshitz (1958), Cowley 
(1980), Cochran (1960) for theory and Fujii et al. 
(1974) for supportive experimental evidence for (7) for 
CsPbCl 3 ]. Modes in the vicinity of the M point and also 
around the R point also show softening (Fujii et al., 
1974). We shall assume that they follow a relationship 

~o~= o9~.s(T-- Ts) /T  s (T s < Tc), (8) 

where T s is some temperature below T c and varies with 
the distance in q space of the mode from the position of 
the soft zone-boundary mode. Experimental evidence 
from the closely related structure, K2SnC16 (Vogt, 
Prandl & Reichardt, 1981), shows that (8) should be a 
reasonable approximation for our purposes. Evidence 
of such a relationship also exists for other substances 
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exhibiting soft-mode behaviour, e.g. PbTe (Alperin, 
Pickart & Rhyne, 1972), SbSI (Pouget, Shapiro & 
Nassau, 1979). 

Substituting (8) into (6), we obtain, for the mean- 
square displacement, 

( u 2 ) = a T  + T ~ P-----L--s, (9) 
T - T s  

where a, Ps are independent of temperature. For T >> T s 
(and therefore T >> Tc) this reduces to 

(u  2) = a T  + b T >> T c, (10) 

where a, b are independent of temperature and 
neglected terms in (10) are of order T -1. The second, 
constant, term in (10) is the contribution due solely to 
soft modes. Note that a result identical with (10) can be 
derived from (3) of Borsa & Rigamonti (1972), taken in 
the hydrodynamic limit. [Their equation (4), for T close 
to T c, is obtained outside the hydrodynamic r+gime 
and is therefore beyond the range of validity of the 
Ornstein-Zernike theory on which it is based.I 

The experimental evidence in CsPbC13 is consistent 
with (10). Fig. 2 shows the fit to the experimental 
(U~)c ~ for T > 450 K (solid line) with a = 1.17 (15) x 

10 -4/k 2 K -~, b = 0.133 (8)/~2. The soft-mode con- 
tribution is also plotted separately ((u2)S 0 and is seen 
to be constant for T > 450 K. Below 450 K, the upturn 
in the soft-mode contribution indicates that the 
equation for the mean-square displacement in its 
original form, i.e. (9), is appropriate in this region. 

Note that the slopes of (u2,)cl and (R2)CI are 
similar. This indicates that the CI ion vibration would 
be nearly isotropic in the absence of soft modes. 

Recalling that the displacements of the Cs ion are 
associated with the condensation of the Z~ mode at 
315 K (Fig. lc), it is not unreasonable to expect that 
the Cs ions in the cubic phase should also show the 
effects of soft-mode vibrations in their mean-square 
displacements. The fit to (/d2)cs in Fig. 2, using a = 
1.72(8) × 10-4A 2 K -1, b = 0 .022(4)A z in (10) is 
consistent with the presence of such soft-mode 
behaviour for the Cs ion. In this case (10) fits the data 
right down to 325 K, indicating that the T s in (9) are 
clustering around a much lower temperature than 325 
K, i.e. the w~s contributing to (U2)cl are. on average. 
decreasing with temperature rather slowly Jsee (8)1. 

The Pb ion motion and the CI ion motion per- 
pendicular to the xy  plane do not exhibit significant 
soft-mode effects, as the corresponding mean-square 
displacements can be fitted adequately by straight lines 
passing through the origin (Fig. 2). This result is not 
surprising as a net displacement of the Pb ions does not 
occur at either the 320 or 315 K phase transition and 
for the CI ion there is no displacement perpendicular to 
the xy  plane at 320 K and only one third of the ions are 
displaced in this direction at 315 K (see Fig. 1). 

5. Conelusions 

The analysis of neutron diffraction data from CsPbCI 3 
presented here supports the lattice dynamical evidence 
that soft modes are contributing significantly to both 
the C1 and Cs ion vibrations. A similar interpretation 
can undoubtedly be made for the case of CsPbBr 3 
(neutron diffraction data for which was also collected 
and analysed by Sakata et al., 1980). In this case the Br 
ion vibration perpendicular to the xy plane may also be 
exhibiting soft-mode behaviour, although the evidence 
for this is on the borderline of experimental error. 
Neutron diffraction results for the perovskite RbCaF3 
(Bulou, Ridou, Rousseau, Nouet & Hewat, 1980) also 
seem to be consistent with a large soft-mode con- 
tribution to the F ion mean-square displacement in the 
cubic phase. 

Multi-peaking in the one-particle probability density 
function of the CI ion has not been detected to within 
the resolution limits of the data (0.5 A), a result which 
is in accord with the conclusions of Sakata et al. (1980) 
and Hutton et al. (1979). The probability density 
function at each temperature, although slightly exten- 
ded in the x and y directions, is approximately 
Gaussian in shape. 

The effective one-particle potential approach to 
analysis of data from a system in which large 
interparticle correlations are present has proven very 
useful. By observing the degree to which the OPP's are 
quadratic and the fact that they vary strongly with 
temperature, becoming 'softer' as the temperature 
decreases, it has been possible to establish that soft 
modes are contributing substantially to the vibration of 
selected ions throughout the whole temperature range 
of the measurements. 

Using the CI and Cs ions of CsPbC13 as examples, it 
has been shown here for the first time that, when the 
temperature is sufficiently far above the phase tran- 
sition temperature, a temperature-independent compo- 
nent enters into the expression for the mean-square 
displacement of an atom whose vibration is influenced 
by soft modes. This result opens up new possibilities for 
the use of Bragg diffraction measurements in obtaining 
lattice dynamical information. In contrast with the 
information obtainable from neutron inelastic scatter- 
ing data, the Bragg diffraction results can separate out 
the vibrational behaviour of each atomic species. 

Thanks are due to Dr S. Wilkins for useful 
discussions. 
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Abstract 

A general class of helical disorder exists which can be 
described by cumulative random angular motions of 
subunits. This disorder affects layer-line intensities and 
widths by a factor proportional to n 2, the square of the 
order of the layer line. The result explains several 
features of actin and polytetrafluoroethylene (Teflon) 
transforms, and may be relevant to other helical 
systems. 

We have described the angular motions of subunits in 
the F-actin helix (Egelman, Francis & DeRosier, 1982) 
based upon image analysis of electron micrographs. In 
this paper we will present an analytic treatment of the 
effect of this form of disorder on the transform of such 
a structure. Because this treatment appears to explain 
features of other disordered systems (such as Teflon 
above the 292 K transition), we believe that it may be 
applicable to many helical structures. 

Whereas the subunit positions in an ideal helix can 
be described by 
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!~-= r 0 

zj = j A z  

q/j = ~j _ ~ + dq/ = j AqJ, 

we will deal with a particular form of disordered helix 
where subunit positions are described by 

ri = ro 

z~ = j  Az 

q/i= ~i- l  + Aq/ + fi i=J Aq j +  )-J, ilk. (1) 
/, i 

Fig. 1 shows a model of a helix described by these 
equations, and Table 1 contains the first ten values of 6i 
for one of the filaments in Fig. 1. 

The recursive relation in (1) is nothing more than a 
correlated random walk in ~,, and can be param- 
eterized in terms of the first moment and the square 
root of the second moment of the distribution of 6Ss: 

(6.~): ( a i ) ' : = a  ........ . 
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